
J Glob Optim (2009) 44:339–348
DOI 10.1007/s10898-008-9328-4

Necessary and sufficient global optimality conditions
for NLP reformulations of linear SDP problems

Luigi Grippo · Laura Palagi · Veronica Piccialli

Received: 20 February 2008 / Accepted: 21 June 2008 / Published online: 25 July 2008
© Springer Science+Business Media, LLC. 2008

Abstract In this paper we consider the standard linear SDP problem, and its low rank
nonlinear programming reformulation, based on a Gramian representation of a positive semi-
definite matrix. For this nonconvex quadratic problem with quadratic equality constraints,
we give necessary and sufficient conditions of global optimality expressed in terms of the
Lagrangian function.

Keywords Semidefinite programming · Low-rank factorization · Optimality conditions

1 Introduction

The standard linear SDP problem we consider is of the form:

min trace (Q X)

trace (Ai X) = bi , i = 1, . . . , m

X � 0, X ∈ Sn, (SDP)

where the data matrices Q and Ai for i = 1, . . . , m are n × n real symmetric matrices,
trace (Q X) denotes the trace-inner product of matrices, and the n × n matrix variable X
is required to be symmetric and positive semidefinite, as indicated with the notation X �
0, X ∈ Sn , where Sn is the space of real n × n symmetric matrices.

This class of problems contains important problems as special cases, such as linear or
quadratic programming, and arises in a wide variety of applications in system and control
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theory, combinatorial optimization, approximation theory, robust optimization, and mechan-
ical and electrical engineering.

Among the main approaches for solving linear SDP problems are interior point methods
(see for example the survey [9] and references therein), and first order non linear programming
methods [2]. Interior point methods are in general able to solve SDP problems of small or
medium size with high accuracy, and are proved to converge in polynomial time to an ε

optimal solution. However, in practice, the dimension of the problem that can be solved
is still limited to a maximum of a few thousand variables for the most efficient codes. First
order nonlinear programming methods work efficiently in practice and can solve much larger
problems, but convergence to a global solution is not guaranteed. We are interested in this
class of methods, and the aim of this paper is to give a theoretical result that further justifies
this approach.

Burer and Monteiro in [2,3] recast a general linear SDP problem as a low rank semidefinite
programming problem (LRSDP) by applying the change of variables X = R RT , where R is
a n × r , r < n, rectangular matrix. They get the following problem

min trace (Q R RT )

trace (Ai R RT ) = bi , i = 1, . . . , m

R ∈ IRn×r , r ≤ n. (1)

The value of r is chosen by exploiting the result proved in Barvinok [1] and Pataki [11],
that states that, under suitable assumptions, there exists an optimal solution of a linearly
constrained SDP problem with rank r satisfying r(r + 1) ≤ m, where m is the number of
linear constraints. Problem (1) is a nonlinear programming problem; although it has been
proved [1,2,11] that a value of r exists such that there is a one-to-one correspondence between
global solutions of Problem (1) and global solutions of Problem (SDP), Problem (1) is a non
convex problem, so that recognizing a global solution is a difficult task.

In this paper, under suitable assumptions on Problem (SDP), we state necessary and
sufficient global optimality conditions in terms of the Lagrangian function. Similar conditions
have already been proved to be sufficient in [3]. These conditions extend the necessary and
sufficient ones proved in [5] for the special case of the semidefinite relaxation of the max
cut problem and can be related to the necessary and sufficient global optimality conditions
established for some classes of nonconvex quadratic problems (see e.g. [6,8,10]).

2 Low rank SDP formulations

It has been proved in [2,5] that if Problem (SDP) admits a solution X∗ or rank r , this can be
found by solving Problem (1). Actually Problem (1) can be rewritten as a standard nonlinear
programming problem, by setting R = (v1 . . . vn)T , vk ∈ IRr for k = 1, . . . , n so that
(R RT )i j = vT

i v j and we get:

min qr (v) :=
n∑

i=1

n∑

j=1

qi jv
T
i v j

n∑

k=1

n∑

j=1

(Ai )k jv
T
k v j = bi , i = 1, . . . , m, vk ∈ IRr , k = 1, . . . , n. (2)
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The following result proved in [1] and [11] provides a useful upper bound on the value of r ,
that can be easily computed.

Proposition 2.1 Suppose that the feasible set of Problem (SDP) has an extreme point. Then
there exists an X ∈ Sn optimal solution of (SDP) with rank r satisfying the inequality

r(r + 1)/2 ≤ m.

This result implies that r ≤ r̂ where

r̂ = max{k ∈ N : k(k + 1)/2 ≤ m} =
⌊√

1 + 8m − 1

2

⌋
. (3)

Therefore, for sufficiently large values of r , a global solution of Problem (2) gives a global
solution of Problem (SDP). In particular, Problem (2) gives a global solution of Problem
(SDP) for all r ≥ r̂ .

We can recast Problem (2) in compact standard vector notation of nonlinear programming
form by using Kronecker products ⊗ (see, for instance, [7]). We recall that given two matrices
A m × n and B p × q , the Kronecker product A ⊗ B is the mp × nq matrix given by

A ⊗ B =
⎡

⎢⎣
a11 B a12 B . . . a1n B

...
...

...
...

am1 B an2 B . . . amn B

⎤

⎥⎦ .

Given a matrix A ∈ Sn , with spectrum σ(A) = {λ1, . . . , λn} and a matrix B ∈ Sm , with
spectrum σ(B) = {µ1, . . . , µm}, it is known (see [7]) that the spectrum of A ⊗ B is given
by:

σ(A ⊗ B) = {λiµ j : i = 1, . . . , n; j = 1, . . . , m}.
Hence, letting ei ∈ IRn , we can write the vector v ∈ IRnr as

v =
n∑

i=1

(ei ⊗ vi ) =
⎛

⎜⎝
v1
...

vn

⎞

⎟⎠

so that we have

vi = (ei ⊗ Ir )
T v.

Therefore we can write the objective function of Problem (2) as:

n∑

i=1

n∑

j=1

qi jv
T
i v j =

n∑

i=1

n∑

j=1

qi j

(
(ei ⊗ Ir )

T v
)T

(e j ⊗ Ir )
T v

=
n∑

i=1

n∑

j=1

vT (qi j ei e
T
j ⊗ Ir )v = vT (Q ⊗ Ir )v.

With similar reasoning the constraints can be written as

n∑

k=1

n∑

j=1

(Ai )k jv
T
k v j = vT (Ai ⊗ Ir ) v.
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Thus, we obtain the nonlinear programming problem

min vT (Q ⊗ Ir )v = qr (v)

vT (Ai ⊗ Ir ) v = bi i = 1, . . . , m, (NLPr)

which is the problem we will focus on in the rest of the paper.

3 Optimality conditions

We are interested in Problem (NLPr ) as an instrument to solve Problem (SDP), and hence
we need to solve it to global optimality. However, since Problem (NLPr ) is a non convex
problem, the best we can expect from a nonlinear programming algorithm is to produce a
point satisfying some necessary optimality conditions. The question we want to answer is
when a stationary point v̂ of Problem (NLPr ) is a global minimizer that solves Problem (SDP).
We remark that, from now on, for sake of simplicity, we adopt the following terminology:
whenever we say that a point v∗ ∈ IRnr solves Problem (SDP) we mean that X∗ = V ∗V ∗T ,
where V ∗ = (v∗

1 . . . v∗
n)T , is an optimal solution of Problem (SDP), namely

qr (v
∗) = trace (Q X∗) = z∗

SDP.

We want to be able to recognize a global minimum point of Problem (NLPr ) for suitable
values of r . The Lagrangian function for Problem (NLPr ) is, for an arbitrary fixed value
r ≥ 1,

L(v, λ) = vT (Q ⊗ Ir ) v +
m∑

i=1

λi

(
vT (Ai ⊗ Ir ) v − bi

)

= vT

[(
Q +

m∑

i=1

λi Ai

)
⊗ Ir

]
v − λT b (4)

where λ = (λ1, . . . , λn)T .

Definition 3.1 (Stationary point of Problem (NLPr )) A point v̂ ∈ IRnr is a stationary point of
Problem (NLPr ), if there exists a Lagrange multiplier λ̂ ∈ IRm such that (v̂, λ̂) ∈ IRnr × IRm

satisfies:
[(

Q + ∑m
i=1 λi Ai

) ⊗ Ir
]
v̂ = 0

v̂T (Ai ⊗ Ir ) v̂ = bi , i = 1, . . . , m.
(5)

Moreover, v̂ ∈ IRnr is a second order stationary point of Problem (NLPr ), if there exists a
Lagrange multiplier λ̂ ∈ IRm such that (v̂, λ̂) ∈ IRnr × IRm satisfies (5) and

zT

[(
Q +

m∑

i=1

λi Ai

)
⊗ Ir

]
z ≥ 0

for every z ∈ IRnr such that v̂T (Ai ⊗ Ir ) z = 0 for i = 1, . . . , m.

First we state some useful properties of the Lagrange multipliers at a stationary point
deriving from the structure of Problem (NLPr ).

Proposition 3.2 Let v̂ ∈ IRnr be a stationary point of Problem (NLPr ), and let λ̂ ∈ IRm be
the corresponding Lagrange multiplier. Then we have:

λ̂T b = −qr (v̂). (6)
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Proof Let v̂ be a stationary pair of Problem (NLPr ) so that

1

2
∇v L(v̂, λ̂) ≡ (Q ⊗ Ir ) v̂ +

m∑

i=1

λ̂i (Ai ⊗ Ir ) v̂ = 0. (7)

Premultiplying both sides of (7) by v̂T we can write:

v̂T (Q ⊗ Ir ) v̂ +
m∑

i=1

λ̂i v̂
T (Ai ⊗ Ir ) v̂ = 0.

Therefore, as v̂T (Ai ⊗ Ir ) v̂ = bi , for all i = . . . , m, we obtain

m∑

i=1

λ̂i bi = −v̂T (Q ⊗ Ir ) v̂,

which yields (6). 
�

In order to exploit the information coming from the relationship between Problem (NLPr )
and Problem (SDP), we apply duality theory to the convex Problem (SDP) to get global
optimality conditions for it.

Let u ∈ IRm , we can write the standard Lagrangian dual of Problem (SDP):

max bT u

Q −
m∑

i=1

ui Ai � 0. (8)

Denote by u∗ ∈ IRm an optimal solution of Problem (8), and let

bT u∗ = z∗
DUAL.

We suppose that the following assumption is satisfied:

Assumption A1 Problem (SDP) and its dual have nonempty optimal solution sets with zero
duality gap. Therefore, X∗ and u∗ are optimal solutions of the primal problem (SDP) and of
its dual (8) respectively if and only if:

z∗
SDP = trace (Q X∗) = bT u∗ = z∗

DUAL
trace (Ai X∗) = bi i = 1, . . . , m

X∗ � 0

Q −
m∑

i=1

u∗
i Ai � 0.

(9)

By posing ui = −yi for i = 1, . . . , n we can write problem (8) as

min bT y

Q +
m∑

i=1

yi Ai � 0,
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so that the primal dual optimality conditions can be rewritten as

trace (Q X∗) = −bT y∗
trace (Ai X∗) = bi i = 1, . . . , m

X∗ � 0

Q +
m∑

i=1

y∗
i Ai � 0.

(10)

These necessary and sufficient optimality conditions require the solution of the dual problem,
while we are interested in conditions on the Lagrangian of Problem (NLPr ). Indeed, the
following necessary and sufficient global optimality condition can be proven.

Proposition 3.3 Suppose that Assumption A1 holds and that there exists an optimal solution
X∗ of Problem (SDP) of rank r. Then a point v∗ ∈ IRnr is a global minimizer of Problem
(NLPr ) if and only if there exists a λ∗ ∈ IRm such that

[(
Q +

m∑

i=1

λ∗
i Ai

)
⊗ Ir

]
v∗ = 0

Q +
m∑

i=1

λ∗
i Ai � 0

v∗T (Ai ⊗ Ir ) v∗ = bi , i = 1, . . . , m.

(11)

Proof First assume that (11) are satisfied. By (6), we have qr (v
∗) = −bT λ∗. The vector

u∗ = −λ∗ is feasible for the dual problem (8), and hence u∗ is optimal for the dual. Therefore,
the primal dual optimality conditions (9) and the assumption that there exists an optimal
solution X∗ of Problem (SDP) of rank r together give

q∗
r = z∗

SDP = z∗
DUAL = −bT λ∗ = qr (v

∗).

As for the necessity part, we know that v∗ is a global minimum point of Problem (NLPr )
and that the corresponding X∗ = V ∗V ∗T , where V ∗ = (v∗

1 . . . v∗
n)T is optimal for Problem

(SDP). Therefore, we get by (10) that there exist y∗ ∈ IRn such that

−bT y∗ = qr (v
∗)

Q +
m∑

i=1

y∗
i Ai � 0,

and hence

− bT y∗ = v∗T (Q ⊗ Ir ) v∗. (12)

Since v∗T (Ai ⊗ Ir )v
∗ = bi , i = 1, . . . , m, we can write

bT y∗ =
m∑

i=1

y∗
i v∗T (Ai ⊗ Ir )v

∗ = v∗T

(
m∑

i=1

y∗
i Ai ⊗ Ir

)
v∗

that summed up with (12) gives

v∗T

[(
Q +

m∑

i=1

y∗
i Ai

)
⊗ Ir

]
v∗ = 0. (13)
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Since Q + ∑m
i=1 y∗

i Ai is positive semidefinite, by the properties of the Kronecker products,
also the matrix (Q + ∑m

i=1 y∗
i Ai ) ⊗ Ir is positive semidefinite, and hence we can represent

it as the square of its square root so that (13) implies
[(

Q +
m∑

i=1

y∗
i Ai

)
⊗ Ir

]
v∗ = 0.

Therefore, v∗ is a stationary point of Problem (NLPr ) with corresponding Lagrange multiplier
y∗, and setting λ = y∗ we have that (11) holds. 
�

This proposition shows that the solution u∗ of the dual problem is actually obtained
from the Lagrange multiplier λ∗ associated with the solution v∗ of Problem (NLPr ). We
point out once more that problem (NLPr ) is a non convex optimization problem so that
necessary and sufficient global optimality conditions are usually not available. In general,
for non convex quadratic-quadratic minimization problems (quadratic objective function and
quadratic constraints) global optimality conditions can be found in some particular situations
(see [6,8,10]). A well known case is when there is one single quadratic constraint (equality
or inequality), that is the case of the generalized trust region problem [10]. Most of these
conditions consist essentially in requiring that the Hessian of the Lagrangian function is
positive semidefinite at a stationary point, as in the above proposition. However, as far as
we know, the result stated in Proposition 3.3 can not be derived from these previous results.
Note also that we do not require constraint qualifications on the quadratic problem (NLPr ),
but we need Assumption A1 to be satisfied. It results that assuming that strong duality holds
for Problem (SDP) is sufficient to ensure that the global minimum of Problem (NLPr ) is a
stationary point, and this may explain why we do not need to impose constraint qualifications.

The condition stated in Proposition 3.3 can be computationally checked without solving the
dual problem (8), since it requires only the knowledge of the Lagrange multiplier associated
to the point v∗, which is provided by many algorithms that compute stationary points of
nonlinear programming problems.

A different sufficient global optimality condition has been proved in [2] by Burer and
Monteiro. In particular, for r < n they prove the following result that gives a sufficient
condition of global optimality.

Proposition 3.4 (Proposition 4 in [2]) Let v∗ ∈ IRnr , with r < n, be a local minimum point
of Problem (NLPr ). Let v̂ ∈ IRn(r+1) be a point with components v̂i ∈ IRr+1 such that

v̂i =
(

v∗
i

0

)
.

If v̂ is a local minimum of Problem (NLPr+1), then v∗ is a global minimum point of Problem
(NLPr ) that solves Problem (SDP).

Actually, by looking at the details of the proof of the above result in [2], it emerges that
the only assumption needed is that v∗ and v̂ are stationary points with the same Lagrange
multiplier. This has been already observed in [5] for the special LRSDP deriving from the
max-cut problem. Following the same reasoning we show that the condition of Proposition
3.4 is also necessary. By exploiting this result we can establish a new necessary and sufficient
condition that can be computationally checked. Indeed, the following result holds.

Proposition 3.5 Suppose that Assumption A1 holds and that there exists an optimal solution
X∗ of Problem (SDP) of rank r. A point v∗ ∈ IRnr , with r < n, is a global minimum point of
Problem (NLPr ) if and only if the following conditions hold:
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(i) v∗ is a stationary point for Problem (NLPr ) with Lagrange multiplier λ∗ ∈ IRm,
(ii) the point v̂ ∈ IRn(r+1) with components v̂i ∈ IRr+1 defined as

v̂i =
(

v∗
i

0

)
(14)

is a second order stationary point for Problem (NLPr+1) with Lagrange multiplier λ∗ ∈
IRm.

Proof First of all, we prove sufficiency by rephrasing in our notation the proof given in [2].
For any w = (w1, . . . , wn)T ∈ IRn , let us define the vector z ∈ IRnr

zT = (0T
r w1 0T

r w2 . . . 0T
r wn)

which satisfies

v̂T [
Ai ⊗ Ir+1

]
z = 0, for all i = 1, . . . , m. (15)

By the second order necessary conditions for Problem (NLPr+1), we must have zT [(Q+∑m
i=1 λ∗

i Ai
) ⊗ Ir+1

]
z ≥ 0 and therefore, by the expression of z, and setting q∗

i j = (Q +∑m
i=1 λ∗

i Ai )i j we get

0 ≤ zT

[(
Q +

m∑

i=1

λ∗
i Ai

)
⊗ Ir+1

]
z =

(
0T

r w1 . . . 0T
r wn

)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0r
n∑

j=1
q∗

1 jw j

...

0r
n∑

j=1
q∗

njw j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
n∑

i=1

n∑

j=1

q∗
i jwiw j = wT

(
Q +

m∑

i=1

λ∗
i Ai

)
w, (16)

where w is any vector in IRn , which implies (Q + ∑m
i=1 λ∗

i Ai ) � 0. Then the global opti-
mality of v∗ follows from relation (6), that says qr (v

∗) = −bT λ∗, and from the primal dual
optimality conditions (10).

Now we prove the necessity part. Let X∗ be the global minimum solution of rank r of
Problem (SDP), and let v∗ ∈ IRnr be the corresponding global solution of Problem (NLPr ).
Define the vector v̂ ∈ IRn(r+1) with vector components given by (14), which is obviously
feasible for Problem (NLPr+1). We have that

qr+1(v̂) = qr (v
∗) = z∗

SDP,

and hence v̂ is a global minimum point of Problem (NLPr+1). By Proposition 3.3, it follows
that there exists a λ∗ ∈ IRm such that (11) hold. Therefore, by (11) and by the expression of
v̂, it follows
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[(
Q +

m∑

i=1

λ∗
i Ai

)
⊗ Ir+1

]
v̂ =

⎛

⎜⎜⎜⎜⎜⎜⎝

q∗
11 Ir 0r

0T
r q∗

11
. . .

q∗
1n Ir 0r

0T
r q∗

1n
...

. . .
...

q∗
n1 Ir 0r

0T
r q∗

n1
. . .

q∗
nn Ir 0r

0T
r q∗

nn

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

v∗
1

0
...

v∗
n

0

⎞

⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

q∗
1 jv

∗
j

0
...

n∑
j=1

q∗
njv

∗
j

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (17)

Moreover, since by (11) we have that Q + ∑m
i=1 λ∗

i Ai � 0, it follows from the properties of
Kronecker products that (Q + ∑m

i=1 λ∗
i Ai � 0) ⊗ Ir+1 � 0, and hence we have proved that

v∗ is a stationary point for Problem (NLPr ) with Lagrange multiplier λ∗, and v̂ is a second
order stationary point of Problem (NLPr+1) with the same multiplier λ∗. 
�
Remark The requirement that v∗ is a stationary point for Problem (NLPr ) with Lagrange
multiplier λ∗, and v̂ is a stationary point of Problem (NLPr+1) with the same multiplier λ∗
is always verified if the Linear Independence Constraint Qualification (LICQ) is satisfied at
v̂ for problem (NLPr+1). Indeed, in this case the Lagrange multiplier λ̂ associated to v̂ is
unique. It follows from (17),

[(
Q +

m∑

i=1

λ∗
i Ai

)
⊗ Ir+1

]
v̂ = 0, (18)

where λ∗ is the Lagrange multiplier associated to v∗. As the Lagrange multiplier associated
to v̂ is unique, then λ̂ = λ∗. Hence v̂ is a stationary point of Problem (NLPr ) with Lagrange
multiplier λ∗. 
�

4 Concluding remarks

In this paper, we have described a new class of quadratic problems arising as nonlinear
programming reformulations of linear SDP problems for which it is possible to state necessary
and sufficient global optimality conditions. An algorithmic use of these conditions can be
the subject of further investigation.
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